Asymptotics for Rough Stochastic Volatility Models
نویسندگان
چکیده
منابع مشابه
Multiscale Stochastic Volatility Asymptotics
In this paper we propose to use a combination of regular and singular perturbations to analyze parabolic PDEs that arise in the context of pricing options when the volatility is a stochastic process that varies on several characteristic time scales. The classical Black-Scholes formula gives the price of call options when the underlying is a geometric Brownian motion with a constant volatility. ...
متن کاملPortfolio Optimization & Stochastic Volatility Asymptotics
We study the Merton portfolio optimization problem in the presence of stochastic volatility using asymptotic approximations when the volatility process is characterized by its time scales of fluctuation. This approach is tractable because it treats the incomplete markets problem as a perturbation around the complete market constant volatility problem for the value function, which is well-unders...
متن کاملSmall-time Asymptotics for Fast Mean-reverting Stochastic Volatility Models1
In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB-type equations where the “fast variable” lives in a noncompact space. We develop a general argument based on viscosity solutions which ...
متن کاملSmall-time Asymptotics for Fast Mean-reverting Stochastic Volatility
In this paper, we study stochastic volatility models in regimes where the maturity is small but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB type equations where the “fast variable” lives in a non-compact space. We develop a general argument based on viscosity solutions which ...
متن کاملAsymptotics and calibration of local volatility models
We derive a direct link between local and implied volatilities in the form of a quasilinear degenerate parabolic partial differential equation. Using this equation we establish closed-form asymptotic formulae for the implied volatility near expiry as well as for deep inand out-of-the-money options. This in turn leads us to propose a new formulation near expiry of the calibration problem for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Financial Mathematics
سال: 2017
ISSN: 1945-497X
DOI: 10.1137/15m1009330